Enhanced Reactivity of Electron-Deficient Enynes in the Palladium-Catalyzed homo-Benzannulation of Conjugated Enynes

Shinichi Saito,*, ${ }^{\dagger}$ Yukiyasu Chounan, ${ }^{\ddagger}$ Tsutomu Nogami, ${ }^{\ddagger}$ Tomoko Fukushi, ${ }^{\ddagger}$ Norie Tsuboya, ${ }^{〔}$ Yasuyuki Yamada," Haruo Kitahara, ${ }^{\ddagger}$ and Yoshinori Yamamoto*, ${ }^{1}$
Institutefor Chemi cal Reaction Science, Tohoku University, Sendai, 980-8578, J apan,
Department of Natural Science, Faculty of Education, Hirosaki University, Hirosaki 036-8560, J apan, and Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, 980-8578, J apan

yoshi@yamamotol.chem.tohoku.ac.jp
Received May 4, 2000
We report the high reactivity of electron-deficient enynes in the homo-benzannulation of conjugated enynes in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$. The introduction of electron-withdrawing groups enabled us to carry out the benzannulation of 1-substituted enynes as well as 1,2- and 2,4-disubstituted enynes. Polysubstituted benzenes were prepared in a highly regioselective manner in good to excellent yields.

Polysubstituted benzenes are useful synthetic intermediates in organic synthesis, and the development of efficient synthetic methods for such compounds is very important. The preparation of polysubstituted benzenes has been mainly carried out by stepwise introduction of functional groups into the benzene ring via electrophilic ${ }^{1}$ or nucleophilic ${ }^{2}$ substitution. Careful choice of parameters such as synthetic route and reaction condition is necessary to achieve highly regioselective syntheses of polysubstituted benzenes. Recently, we reported the palladium-catalyzed homo-benzannulation reaction (cyclodimerization) of 2-substituted enynes (eq 1). ${ }^{3}$ The

homo-benzannulation of 4-substituted enynes also proceeded to yield 2,6-disubstituted styrenes (eq 1). ${ }^{4}$ These reactions have been applied to the synthesis of many functionalized benzenes such as paracyclophanes and phenols. ${ }^{5}$ A common and useful feature of these reactions is the highly regioselective formation of substituted

[^0]benzenes. For example, 2-substituted enynes always cyclodimerize to give the corresponding 1,4-disubstituted benzenes, and no isomeric 1,3-disubstituted benzenes are isolated. While di- or trisubstituted enynes were used as the substrates for the cross-benzannulation reaction, ${ }^{5,6}$ only monosubstituted enynes cyclodimerized in the homobenzannulation reaction: the reaction did not proceed when a 1,2- or 2,4-dialkyl enyne was employed as the substrate (eq 2).

Our recent study of the substituent effects on the reactivity of substituted enynes revealed that the reactivity of electron-deficient enynes was much higher compared to that of alkyl enynes. The introduction of an electron-withdrawing group into the conjugated enynes enabled the homo-benzannulation of polysubstituted enynes to proceed. ${ }^{7}$ In this paper we report details of the palladium-catalyzed homo-benzannulation of electrondeficient enynes (eq 3). ${ }^{8}$

[^1]Table 1. homo-Benzannulation of Electron-Deficient Enynes (1)

Results

Benzannulation of Conjugated (Z)-E nynes. (Z)-1-Ethoxycarbonyl-1-butene-3-yne (1a) cydodimerized in the presence of a catalytic amount of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ to give the 1,3-disubstituted benzene (2a) in good yield (Table 1, entry 1). It is noteworthy that the reactivity of this enyne was significantly higher compared to that of other alkyl enynes, ${ }^{3,4}$ and the reaction proceeded smoothly at room temperature. The stereochemistry of the olefinic moi ety was unaffected during the reaction, and we did not isolate the regioisomeric (E)-styrene derivative from the reaction mixture. The enhanced reactivity of enynes in the benzannulation in the presence of an alkoxycarbonyl group was also demonstrated in the reaction of 1,2-disubstituted enynes. Thus, the homo-benzannulation of (Z)-1-ethoxycarbonyl-2-hexyl-1-butene-3-yne $\mathbf{1 b}$ also proceeded smoothly in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ at $80{ }^{\circ} \mathrm{C}$ to give the 1,2,4-trisubstituted benzene $\mathbf{2 b}$ in 73% yield (Table 1, entry 2). When a cyano group was introduced in the C-1 position of the enyne, a similar rate acceleration of the reaction was observed, and the reaction of 1c proceeded at $80{ }^{\circ} \mathrm{C}$ to give the 1,2,4-trisubstituted benzene 2c (Table 1, entry 3). The homo-benzannulation of enyne 1d bearing a dimethylaminocarbonyl group, which is a less electron-withdrawing group, at the C-1 position proceeded smoothly (Table 1, entries 4 and 5). However, the reactivity of the enyne 1d was much lower compared to that of la, and it was necessary to carry out the reaction at higher temperature for the complete conversion in a short period. ${ }^{9}$

Benzannulation of Conjugated (E)-E nynes and 2,4-Disubstituted Enynes. The reactivity of (E)-enynes was lower compared to that of (Z)-enynes in the homobenzannulation reaction. Thus, the homo-benzannulation of the (E)-ethoxycarbonylenyne 3a proceeded in the presence of Pd catalyst (Table 2, entry 1), though the yield of the product 4a was lower (43\%) and a higher

[^2]Table 2. homo-Benzannulation of Electron-Deficient Enynes (2)

entry	enyne	EWG	R^{1}	temp $\left({ }^{\circ} \mathrm{C}\right)$	time (h)	product	yield $(\%)$
$\mathbf{1}$	$\mathbf{3 a}$	COOEt	H	80	2	$\mathbf{4 a}$	43
$\mathbf{2}$	$\mathbf{3 b}$	COOEt	n- $\mathrm{C}_{6} \mathrm{H}_{13}$	80	3	$\mathbf{4 b}$	38
3	$\mathbf{3 c}$	CN	$\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11}$	80	5	$\mathbf{4 c}$	53

reaction temperature ($80{ }^{\circ} \mathrm{C}$) was required (compare Table 1, entry 1 and Table 2, entry 1). A similar tendency was observed in the reaction of other enynes such as $\mathbf{3 b}$ and 3c (Table 2, entries 2 and 3). The stereochemistry of the olefinic moiety was again unaffected in these reactions. We applied the reaction of (E)-enynes to the synthesis of a naphthalenone derivative. Thus, the cyclic carbonyl enyne 5 cyclodimerized efficiently in the presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ to give 6 in 72% yield (eq 4).

While 2,4-dialkylenynes did not undergo homo-benzannulation, the reaction of an electron-deficient 2,4disubstituted enyne proceeded rapidly under very mild conditions. Thus, the palladium-catalyzed cyclodimerization of the methoxycarbonylenyne 7 proceeded at 30 ${ }^{\circ} \mathrm{C}$ to give the 1,2,3,5-tetrasubstituted benzene $\mathbf{8}$ in good yield (eq 5). On the other hand, we previously reported

that the benzannulation of the cyanoenyne $\mathbf{9 a}$ and perfluorohexylenyne 9b gave the expected polysubstituted benzenes 10a and 10b, respectively, together with
the zipper annulated products 11a and 11b (eq 6). ${ }^{10}$ It

9a (EWG $=\mathrm{CN}, \mathrm{R}=n-\mathrm{C}_{6} \mathrm{H}_{13}$)
9b (EWG $=n-\mathrm{C}_{6} \mathrm{~F}_{13}, \mathrm{R}=\mathrm{H}$)

10a, 39\%
(EWG $=C N, R=n-C_{6} H_{13}$)
10b, 30\%
($\mathrm{EWG}=n-\mathrm{C}_{6} \mathrm{~F}_{13}, \mathrm{R}=\mathrm{H}$)

cat. $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$
toluene, r. t.
$+$

11a, 29\%
$\left(E W G=C N, R=n-C_{6} H_{13}\right)$
11b, 33\%
($E W G=n-C_{6} F_{13}, R=H$)
should be noted that a nearly 1:1 mixture of the ordinary benzannulation product and nonordinary zipper annuIation product was obtained in the presence of Pd catalyst, though the use of Ni catalyst resulted in the formation of zipper annulation products in some reactions. ${ }^{10}$

Discussion

On the basis of the results mentioned above, it is now obvious that the reactivity of electron-deficient enynes is much higher compared to that of alkylenynes: the very mild condition ($\mathrm{rt}, 2 \mathrm{~h}$) required for the cyclodimerization of $\mathbf{1 a}$ is remarkable compared to the reaction conditions required for the reaction of 2 -substituted enynes and 4-substituted enynes ($65{ }^{\circ} \mathrm{C}$, $1 \mathrm{~h}^{3}$ or $100{ }^{\circ} \mathrm{C}$, $24 \mathrm{~h},{ }^{4}$ respectively). Comparing the reaction conditions of $\mathbf{1 a}$ and 1d (Table 1), we assume that the rate of the reaction depends on the electron-withdrawing ability of the substituent: the reactivity of the less electron-deficient enyne 1d was lower compared to that of more electrondeficient 1a. Currently the precise mechanism of this benzannulation is not clear, and therefore the role of the electron-withdrawing group in the reaction is difficult to understand. Since it has been shown that the interaction of palladium(0) species with electron-deficient alkynes is much stronger than that with electron-rich alkynes, ${ }^{11}$ the increased reactivity of the enynes might be explained in terms of stronger interaction of the electron-deficient enynes with the Pd catalyst.

The isomerization of the less reactive (E)-enynes to more reactive (Z)-enynes has been suggested as a possible pathway for the benzannulation reaction. ${ }^{6} \mathrm{H}$ owever, this isomerization process is unlikely to occur during the reaction, since the formation of a single isomer was observed in all of the reactions we carried out. Furthermore, the successful benzannulation of the cyclic enyne 5 clearly shows that the isomerization of (E)-enyneto (Z)enyne is not a requirement for the reaction to proceed. The reactions of (Z)-enynes proceeded under milder conditions compared to those of (E)-enynes, probably because the rate of the formal [1,3]-migration of the hydrogen atom is quite different. ${ }^{12,13} \mathrm{As}$ is the case for

[^3](a)

(b)

(c)

(d)

Field (Inductive) Effect

Figure 1. Electronic effects of the substitutents (electronwithdrawing groups) on the enynes.
other benzannulation reactions, the reactivity of polysubstituted enynes was lower compared to that of monosubstituted enynes, probably because of steric effects.

A similar rate-acceleration effect was also observed in the reactions of 1-cyanoenynes, 1-alkoxycarbonylenynes, and 1-ketoenynes, in which only the benzannulation products were obtained, whereas a rate-acceleration effect and the formation of the zipper annulation products (bicyclic compounds) were observed in the reaction of 2-cyanoenyne 9a and 2-perfluorohexylenyne 9b. ${ }^{10}$ The formation of these bicydlic compounds might beexplained in terms of the different electronic properties of the substituents present in the C-2 position. Thus, the ethoxycarbonyl group has the relatively stronger conjugation effect (field value $(F)=0.34$, resonance value (R) $=0.11),{ }^{14}$ while the cyano group has the stronger inductive effect ($F=0.51$) and a relatively weak resonance effect $(R=0.15) .{ }^{15}$ The perfluoroalkyl group also has a similar electronic effect ($F=0.42, R=0.06$). ${ }^{14,15}$ The difference of the electronic properties of the substituents should play an important role in the reaction of 2 -substituted enynes, and it is likely that the enyne with a substituent that has a stronger field effect cyclodimerizes to give the bicyclic compound in addition to the benzene derivative in the presence of palladium catalysts. Considering the electronic structures of the enynes, the activation of the C-1 and/or C-4 carbon might be important for the benzannulation to proceed (Figure 1 (b)-(d)). On the other hand, the activation of C-3 carbon might be important for the zipper annulation to proceed (compare Figure 1 a and b). ${ }^{16}$ The nature of the electronwithdrawing substituents had no influence on the reaction pathway of 1-substituted enynes.

[^4]In summary, we found that some electron-deficient enynes are highly reactive substrates for the palladiumcatalyzed homo-benzannulation. We succeeded in extending the scope of the benzannulation reaction, and some disubstituted enynes also cyclodimerized in the presence of a Pd catalyst. Useful functional groups such as cyano group and alkoxycarbonyl group were introduced to the benzene ring under mild conditions. This reaction provides another efficient method for the regioselective synthesis of functionalized polysubstituted benzenes.

Experimental Section

Synthesis of the Conjugated Enynes. Monosubstituted enynes 1a, ${ }^{17}$ 1d, and $3 a^{17}$ were prepared by the Sonogashira reaction ${ }^{18}$ of (Z)-ethyl 3-bromopropenate, ${ }^{19}$ (E)-ethyl 3-bromopropenate, ${ }^{19}$ or (Z)-2-bromopropenoic acid dimethylamide ${ }^{20}$ with (trimethylsilyl)acetylene, followed by the removal of the trimethylsilyl group ($\mathrm{KF} / \mathrm{MeOH}$). The synthesis of 1,2 -di substituted enynes $\mathbf{1 b}$ and $\mathbf{3 b}$ was carried out by the Horner-Wadsworth-Emmons reaction of the (trimethylsilyl)ethynyl ketones ${ }^{21}$ with triethyl phosphonoacetate, ${ }^{22}$ isolation of the isomers by column chromatography, and deprotection (KF/ MeOH). The synthesis of 1,2 -disubstituted enynes $\mathbf{1 c}$ and $\mathbf{3 c}$ was carried out by the Horner-Wadsworth-Emmons reaction of the ethynyl ketones ${ }^{23}$ with diethyl (cyanomethyl)phosphonate, ${ }^{22}$ and isolation of the isomers by column chromatography. Cyclic ketoenyne 5^{23} was prepared according to the published method. The synthesis of $\mathbf{7}$ was carried out by the Sonogashira reaction ${ }^{18}$ of methyl 1-bromovinylacrylate ${ }^{25}$ with 1-hexyne. Compound 7 has limited stability, and the polymerization proceeded easily in the absence of a radical inhibitor such as BHT (2,6-di-tert-butyl-4-methyl phenol).
(Z)-3-Hexyl-pent-2-en-4-ynoic acid ethyl ester (1b): yellow oil; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.03(\mathrm{~m}, 1 \mathrm{H}), 4.17$ (q, $\mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $3.57(\mathrm{~d}, \mathrm{~J}=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.25$ (ddd, J = 7.5, $7.5,1.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.56 (quint, J $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.2-1.3(\mathrm{~m}, 9 \mathrm{H})$, $0.85(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.8$, 138.6, 125.7, 88.4, 81.2, 60.2, 38.7, 31.5, 28.5, 27.7, 22.5, 14.2, 14.0; IR (neat) 3256, 2957, 2932, 2860, 2095, 1732, 1622, 1456, 1373, 1350, 1283, 1205, 1142, 1099, 1040, 862, $640 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}$ 208.1463, found 208.1467. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}$: C, 74.96; H, 9.68. Found: C, $74.64 ; \mathrm{H}$, 9.35 .
(Z)-3-Pentyl-pent-2-en-4-ynenitrile (1c): yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.53(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 1 \mathrm{H}), 2.30$ (ddd, $\mathrm{J}=7.6,7.6,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.26(\mathrm{~m}$, $4 \mathrm{H}), 0.90(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 146.4, 116.2, 104.5, 88.4, 79.8, 37.2, 30.8, 27.2, 22.2, 13.8; IR (neat) 3298, 3057, 2959, 2932, 2862, 2222, 2098, 1684, 1593, 1466, 1458, 1379, 1169, 1101, 818, $648 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}$ 147.1047, found 147.1058.
(Z)-Pent-2-en-4-ynoic acid dimethylamide (1d): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.43(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}, 1 \mathrm{H})$, 5.84 (dd, J = 11.7, $2.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.28(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.04 $(\mathrm{s}, 3 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.0,134.2$, 115.0, 85.2, 79.4, 37.5, 34.7; IR (neat) 3217, 2934, 1634, 706

[^5]cm^{-1}; HRMS calcd for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}$ 123.0684, found 123.0687. Anal. Calcd for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}: \mathrm{C}, 68.27 ; \mathrm{H}, 7.37$; N, 11.37. Found: C, 67.99; H, 7.55; N, 11.18.
(E)-3-Hexyl-pent-2-en-4-ynoic acid ethyl ester (3b): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.10$ (s, 1H), 4.15 (q , $2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}$), $3.15(\mathrm{~s}, 1 \mathrm{H}), 2.71(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.7 \mathrm{~Hz}), 1.56$ (quint, $2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}$), 1.2-1.6 (m, 9H), $0.86(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.7$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.5,141.8,125.7,84.3$, 81.6, 60.1, 32.0, 31.6, 28.9, 28.3, 22.6, 14.2, 14.0; IR (neat) 3304, 2959, 2930, 2860, 2097, 1717, 1614, 1466, 1369, 1219, 1178, 1146, 1038, 878, $635 \mathrm{~cm}^{-1}$; HRMS cal cd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}$ 208.1463, found 208.1476. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{O}_{2}$: $\mathrm{C}, 74.96 ; \mathrm{H}, 9.68$. Found: C, 74.94; H, 9.52.
(E)-3-Pentyl-pent-2-en-4-ynenitrile (3c): yellow oil; ${ }^{1} \mathrm{H}$ NMR (270 MHz, CDCl 3) $\delta 5.56(\mathrm{~s}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 1 \mathrm{H}), 2.47(\mathrm{t}, \mathrm{J}$ $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.28(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}$, $\mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.7,115.7$, 105.0, 86.3, 81.3, 35.4, 30.8, 27.4, 22.3, 13.8; IR (neat) 3292, 3059, 2959, 2932, 2862, 2220, 2098, 1589, 1466, 1458, 1379, 1339, 827, $650 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}$ 147.1047, found 147.1044. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}: \mathrm{C}, 81.59 ; \mathrm{H}, 8.90 ; \mathrm{N}, 9.51$. Found: C, 81.19; H, 8.82; N, 9.28.

2-Methylene-oct-3-ynoic acid methyl ester (7): col orless oil; ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.50(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.99 (dt, J $=1.5 \mathrm{~Hz}, 0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{t}, \mathrm{J}=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 1.63-1.36(\mathrm{~m}, 4 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.1,132.9,124.2,93.9,76.6,52.6,30.5$, 22.0, 19.1, 13.6; IR (neat) 2957, 2932, 2359, 1736, 1435, 1213 cm^{-1}; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}$: 166.0994, found 166.0978. Because of the limited stability of 7, we carried out the benzannulation reaction without completely removing the impurity.

Representative Procedure for the Palladium-CataIyzed Benzannulation of Electron-Deficient Enynes. To a yellow solution of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(11.6 \mathrm{mg}, 0.01 \mathrm{mmol})$ in dry toluene (1.0 mL) was added $\mathbf{1 c}(73.6 \mathrm{mg}, 0.5 \mathrm{mmol})$ at room temperature, and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 1 h under Ar. The mixture was passed through a short alumina column (ether) and evaporated. The residue was further purified by column chromatography (silica gel, hexane/ethyl acetate $=20: 1$) to give $\mathbf{2 c}$ as a yellow oil ($57.4 \mathrm{mg}, 0.78 \mathrm{mmol}$, $78 \%)$. The reaction conditions and the isolated yields for the reaction of 1, 3, 5, and $\mathbf{7}$ are described in Tables 1 and 2 and eqs 5 and 6 .
5-((Z)-2-Ethoxycarbonyl-1-hexylvinyl)-2-hexylbenzoic acid ethyl ester (2a): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR (270 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{bs}, 1 \mathrm{H}), 8.00(\mathrm{bd}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{bd}, \mathrm{J}$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.01(\mathrm{~d}, \mathrm{~J}=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.17$ $(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.39(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{t}, \mathrm{J}=7.0$ $\mathrm{Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.2,165.9,141.8$, $135.2,133.6,130.7,130.3,129.8,128.0,121.1,61.0,60.4,14.3$, 14.0. IR (neat) 1717, 1633, cm^{-1}; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4}$ 248.1048, found 248.1055. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4}$: $\mathrm{C}, 67.73$; H, 6.50. Found: C, 67.59; H, 6.51 .

5-((Z)-2-Ethoxycarbonyl-1-hexylvinyl)-2-hexylbenzoic acid ethyl ester (2b): yellow oil; ${ }^{1} \mathrm{H}$ NMR (270 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~m}, 2 \mathrm{H}), 5.88(\mathrm{~m}, 1 \mathrm{H}), 4.34(\mathrm{q}, \mathrm{J}$ $=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.97-2.91(\mathrm{~m}, 2 \mathrm{H})$, 2.45-2.40 (m, 2 H), 1.62-1.54 (m, 2 H), 1.41-1.25 (m, 15 H), $1.05(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 0.91-0.84(\mathrm{~m}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $67.8 \mathrm{MHz}) \delta 167.7,166.0,158.7,144.0,137.6,130.7,130.3$, $129.4,129.2,117.6,60.8,59.8,40.3,34.4,31.8,31.78,31.5,29.5$, 28.7, 27.3, 22.7, 22.5, 14.3, 14.1, 14.0, 13.9; IR (neat) 1722, $1639 \mathrm{~cm}^{-1}$; HRMS cal cd for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{O}_{4} 416.2926$, found 416.2915 .
5-((Z)-2-Cyano-1-pentylvinyl)-2-pentylbenzonitrile (2c): yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62-7.59$ (m , $2 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 2.85(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.53(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.71-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.26$ $(\mathrm{m}, 10 \mathrm{H}), 0.92-0.83(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 163.6, 148.1, 135.8, 131.6, 131.1, 129.9, 117.4, 116.8, 112.9, $96.5,37.8,34.4,31.3,31.0,30.3,27.1,22.3,22.2,13.9,13.8 ;$ IR (neat) 2224, $1612 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2}$ 294.2095, found 294.2097. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2}$: C, 81.59; H, 8.90; N, 9.51. Found: C, 81.55; H,8.95; N, 9.38.

3-((Z)-2-Dimethylcarbamoylvinyl)-N,N-dimethylbenzamide (2d): red purple oil; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.36-7.31(\mathrm{~m}, 4 \mathrm{H}), 6.61(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, \mathrm{~J}=12.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.08$ (s, 3H), 2.96 (s, 3H), $2.94(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.9,168.4,136.6,135.4,132.4$, 129.0, 128.5, 126.9, 126.7, 124.2, 39.4, 37.4, 35.2, 34.3; IR (neat) 2932, 1684, 1393, $750 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ 246.1368, found 246.1370.

3-((Z)-2-Ethoxycarbonylvinyl)benzoic acid ethyl ester (4a): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21$ (bs, 1 H), 8.05 (ddd, J $=7.7 \mathrm{~Hz}, 1.3 \mathrm{~Hz}, 1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.72 (d, J = $15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{dd}, \mathrm{J}=7.7 \mathrm{~Hz}, 7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.52(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.28$ $(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.35(\mathrm{t}, \mathrm{J}=7.0$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.7,166.0,143.4$, $134.8,132.1,131.3,131.0,128.98,128.95,119.6,61.3,60.7$, 14.34, 14.32; IR (neat) 1717, $1641 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4}$ 248.1048, found 248.1053. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{4}$: C, 67.73; H, 6.50. Found: C, 67.53; H, 6.59.

5-((E)-2-Ethoxycarbonyl-1-hexylvinyl)-2-hexylbenzoic acid ethyl ester (4b): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $270 \mathrm{MHz}) \delta 7.90(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, \mathrm{J}=2.0,8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.24(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{q}, \mathrm{J}=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 4.21(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.10-3.05(\mathrm{~m}, 2 \mathrm{H}), 3.00-$ $2.90(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.43-1.25(\mathrm{~m}, 18 \mathrm{H}), 0.93-$ $0.82(\mathrm{~m}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 67.8 \mathrm{MHz}\right) \delta 167.71,166.45$, 159.66, 145.12, 138.82, 131.12, 130.28, 129.60, 128.70, 117.29, $61.03,59.88,34.29,31.75,31.72,31.56,30.84,29.45,29.40$, 29.02, 22.63, 22.58, 14.34, 14.32, 14.09, 14.04. IR (neat) 1717, $1624 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{O}_{4} 416.2926$, found 416.2916 .

5-((E)-2-Cyano-1-pentylvinyl)-2-pentylbenzonitrile (4c): yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~d}, \mathrm{~J}=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, \mathrm{J}=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}$,
$1 \mathrm{H}), 5.51(\mathrm{~s}, 1 \mathrm{H}), 2.84(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 1.70-1.65(\mathrm{~m}, 2 \mathrm{H})$, $1.45-1.29(\mathrm{~m}, 10 \mathrm{H}), 0.92-0.84(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 162.6, 148.6, 136.0, 130.35, 130.28, 130.1, 117.4, $116.7,113.2,96.9,34.3,33.6,31.3,31.2,30.4,28.0,22.3,22.2$, 13.9, 13.8; IR (neat) 2860, 2216, $1603 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2}$ 294.2095, found 294.2096. Anal. Cal cd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2}$: C, 81.59; H, 8.90; N, 9.51. Found: C, 81.63; H, 9.20; N, 9.38.

3,5-Dibutyl-4-(1-methoxycarbonylvinyl)benzoic acid methyl ester (8): pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 270 \mathrm{MHz}$) $\delta 7.74(\mathrm{~s}, 2 \mathrm{H}), 6.71(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}$, 1H), $3.91(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.59-2.37(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.21$ (m, 8H), $0.89(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 67.8 \mathrm{MHz}\right)$ $\delta 167.3,166.9,141.5,140.5,138.6,129.9,129.4,127.4,52.3$, 52.0, 33.4, 33.1, 22.7, 13.9; IR (neat) 1724, $1435 \mathrm{~cm}^{-1}$; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{4}$ 332.1987, found 332.1991.

7-(3-Oxocyclohex-1-enyl)-3,4-di hydro-2H-naphthalen-1-one (10): colorless powder, mp $71-74{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (270 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}) 7.66(\mathrm{dd}, \mathrm{J}=2.2,8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{t}, \mathrm{J}=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.01(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.80$ (ddd, J = 1.5, $6.1,6.1 \mathrm{~Hz}, 2 \mathrm{H}$), $2.69(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{~m}, 4$ H); ${ }^{13} \mathrm{C}$ NMR ($67.8 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 199.8, 197.9, 158.6, 146.2, 137.2, 132.7, 130.6, 129.5, 125.6, 124.9, 39.0, 37.2, 29.6, 28.0, 23.0, 22.7; IR(KBr) 1670, 1600, 1409, 1328, 1257, 1203, 1178 cm^{-1}; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}$ 240.1150, found 240.1148. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{2}$: $\mathrm{C}, 79.97 ; \mathrm{H}, 6.71$. Found: $\mathrm{C}, 79.96$; H, 6.87.

Supporting Information Available: ${ }^{1} \mathrm{H}$ NMR spectra for compounds $\mathbf{1 c}, \mathbf{2 b}, \mathbf{2 d}, \mathbf{4 b}, \mathbf{7}$, and $\mathbf{8}$ (PDF). This material is available free of charge via the Internat at http://pubs.acs.org.

J O0006876

[^0]: ${ }^{\dagger}$ Institute for Chemical Reaction Science, Tohoku University.
 \# Hirosaki University.
 ${ }^{\pi}$ Department of Chemistry, Graduate School of Science, Tohoku University.
 (1) March, J. Advanced Organic Chemistry, 4th ed.; Wiley: New York, 1992; Chapter 11, pp 501-568.
 (2) Snieckus, V. Chem. Rev. 1990, 90, 879-933.
 (3) Saito, S.; Salter, M. M.; Gevorgyan, V.; Tsuboya, N.; Tando, K.; Yamamoto, Y. J. Am. Chem. Soc. 1996, 118, 3970-3971.
 (4) Gevorgyan, V.; Tando, K.; Uchiyama, N.; Yamamoto, Y. J . Org.

[^1]: (5) Reviews: (a) Saito, S.; Yamamoto, Y. Chem. Rev. in press. (b) Gevorgyan, V.; Yamamoto, Y. J . Organomet. Chem. 1999, 576, 232247.

[^2]: (6) (a) Gevorgyan, V.; Takeda, A.; Homma, M.; Sadayori, N.; Radhakrishnan, U.; Yamamoto, Y. J . Am. Chem. Soc. 1999, 121, 63916402. (b) Gevorgyan, V.; Sadayori, N.; Y amamoto, Y. Tetrahedron Lett. 1997, 38, 8603-8604.
 (7) The enhanced reactivity of alkoxycarbonylenynes in the crossbenzannulation was reported. See: ref 6.
 (8) Preliminary results of this study have been communicated. See: Saito, S.; Tsuboya, N.; Chounan, Y.; Nogami, T.; Yamamoto, Y. Tetrahedron Lett. 1999, 40, 7529-7532.
 (9) We monitored these reactions by TLC and quenched the reaction when the starting material disappeared. Therefore, the results described in Tables 1 and 2 would reflect the difference of the reactivity of the enynes to some extent.

[^3]: (10) Saito, S.; Tanaka, T.; Koizumi, T.; Tsuboya, N.; Itagaki, H.; Kawasaki, T.; Endo, S.; Yamamoto, Y. J . Am. Chem. Soc. 2000, 122, 1810-1811.
 (11) Greaves, E. O.; Lock, C. J. L.; Maitlis, P. M. Can. J. Chem. 1968, 46, 3879-3891.

[^4]: (12) The rate of the reaction may also be controlled by the steric effect. The lower yields of the products in the reaction of (E)-enynes may be explained in terms of the formation of polymeric compounds.
 (13) Exclusive hydrogen migration from E-position of conjugated enynes has been reported in the cross-benzannulation reaction. See: ref 6 a.

 (14) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165195.
 (15) Values of n-perfluoropropyl group.
 (16) Though the C-2 carbon is most activated by the field effect of the electron-withdrawing group attached to the C-2 position (Figure 1 (a), no intermolecular C-C bond between C-2 carbons was formed in the zipper annulation.

[^5]: (17) Barrett, A. G. M.; Hampercht, D.; Okubo, M. J. Org. Chem. 1997, 62, 9376-9378.
 (18) Brandsma, L.; Vasilevsky, S. F.; Verkruijsse, H. D. Application of Transition Metal Catalysts in Organic Synthesis; Springer: Berlin, 1999; pp 210-213.
 (19) Weir, J. R.; Patel, B. A.; Heck, R. F. J. Org. Chem. 1980, 45, 4926-4931.
 (20) Ma, S.; Lu, X.; Li, Z. J. Org. Chem. 1992, 57, 709-713. We prepared 1d by the reaction of ethyl (E)-2-bromoacrylate with dimethylamine.
 (21) Brandsma, L. PreparativeAcetylenic Chemistry, 2nd ed.; Elsevier: Amsterdam, 1988; pp 105-107.
 (22) Pettit, G. R.; Dias, J. R. J . Org. Chem. 1971, 36, 3207-3211.
 (23) Brandsma, L. PreparativeAcetylenic Chemistry, 2nd ed.; Elsevier: Amsterdam, 1988 pp 281-282.
 (24) Cheng, M.; Hulce, M. J . Org. Chem. 1990, 55, 964-975.
 (25) Rachon, J.; Goedken, V.; Walborsky, H. M. J . Org. Chem. 1989, 54, 1006-1012.

